MATHEMATICAL ANALYSIS IT (2024-25)

CHI-WAI LEUNG

1. DIFFERENTIATION

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-
valued function defined on I.

Definition 1.1. Let c € I. We say that f is differentiable at c if the following limit exists:
@) - @)
T—cC Tr—c
In this case, we write f'(c) for the above limit and we call it the derivative of f at c. We say that if
f is differentiable on I if f'(x) exists for every point x in I.

Proposition 1.2. Let ¢ € I. Then f'(c) exists if and only if there is a function ¢ defined on I such
that the function ¢ is continuous at ¢ and

f(@) = fle) = p(z)(z = ¢)
forallz e I.
In this case, p(c) = f'(c).

Proof. Assume that f’(c) exists. Define a function ¢ : I — R by

J@1@) i st
p@)={ e LIFG
f'(c) if z=c

Clearly, we have f(x) — f(c) = p(z)(x —¢) for all z € I. We want to show that the function ¢ is
continuous at c. In fact, let € > 0, by the definition of the limit of a function, there is é > 0 such that

ERGE(C

whenever z € I with 0 < |x—¢| < 0. Therefore, we have |f'(c)—p(z)| <casz € I with0 < |[x—¢| < 0.
Since ¢(c) = f'(c), we have |f'(¢) — ¢p(z)| < € as © € I with |z — ¢| < 0, hence the function ¢ is
continuous at c as desired.

f(@)—f(c)

The converse is clear since ¢(z) = =—~—-~ if z # c. The proof is complete. D

| <e

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f’(c) exists, then there is a function ¢ defined on I such that the
function ¢ is continuous at ¢ and we have f(z) — f(c¢) = p(x)(x — ¢) for all x € I. This implies that
lim, . f(z) = f(c), so f is continuous at ¢ as desired. O

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function
f(z) == |z| is a continuous function on R but f'(0) does not exist.
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Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differen-
tiable at ¢ € I. We have the following assertions.

(i) (f +9)'(c) exists and (f + g)'(c) = f'(c) + ¢'(c )

(i1) The product (f - g)'(c) exists and (f - g)'(c) = f'(c)g(c) + f(c)d'(c).

)
(iii) If g(c) # 0, then we have (5)/(6) exists and ( ) (c) = W

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (i), note that we have

flx)g(x) — fle)g(c flx)— f(e z) — g(c
(z)g(z) — fle)g(e) _ f(x) ()g(l,)Jrf(c)g() 9(c)
r—c x—c r—c
for all x € I with x # ¢. From this, together with Proposition 1.3, Part (i7) follows.
For Part (iii), by using Part (i), it suffices to show that (%)’(c) = g(g:%. In fact, ¢'(c) exists, so g is

continuous at c. Since g(c) # 0, there is §; > 0 so that g(x) # 0 for all x € I with |x — ¢| < d;. Then
we have
1 11 ) = 1 (g(c)—g(x))
z—cglx) gl z—c gx)g(c)
for all x € I with 0 < |z — ¢| < §;. By taking z — ¢, we see that (é) (c) exists and (%)'(c) = =99
The proof is complete. ]

Proposition 1.6. (Chain Rule): Let f,g be functions defined on R. Let d = f(c) for some ¢ € R.
Suppose that f'(c) and ¢g'(d) exist. Then the derivative of composition (go f)'(c) exists and (go f) (c) =
g'(d)f'(c).

Proof. By using Proposition 1.2, we want to find a function ¢ : R — R such that

go f(x) —go flc)=p(x)(z—c)
for all z € R and the function ¢(z) is continuous at ¢, and so (g o f)(c) = p(c).
Let y = f(z). By using Proposition 1.2 again, there is a function and SB(y) so that g(y) — g(d) =
B(y)(y — d) for all y € R and [B(y) is continuous at d. Similarly, there is a function a(x) we have
f(z) — f(c) = a(x)(z —c) for all x € R and «a(z) is continuous at c. These two equations imply that

gof(x)—go f(c) = B(f()(f(x) = f(¢) = B(f(x))a(x)(z — ¢)
for all x € R. Let p(z) := B(f(x)) - a(x) for z € R. Since 5(d) = ¢'(d) and a(c) = f'(c), we see that
o(c) = B(f(e)alc) = ¢'(d)f'(c). It remains to show that the function ¢ is continuous at ¢. In fact,
f'(c) exists, so f is continuous at ¢, and hence the composition o f(z) is continuous at ¢. In addition,

the function « is continuous at c¢. Therefore, the function ¢ := (8o f) - « is continuous at ¢, and so
(g o f)(c) exists with (go f) (¢) = p(c) = ¢'(d) f'(¢). The proof is complete. O

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto
J. Letd = f(c) forc € I. Assume that f'(c) exists and the inverse of f, write g := f~', is continuous
at d. If f'(c) # 0, then ¢'(d) exists and ¢'(d) = f%(c)

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F' on I such that
f(z) — f(¢) = F(z)(x —¢) for all z € I and F is continuous at ¢ with F(c) = f'(¢) # 0. F is
continuous at ¢, so there are open intervals I and J; such that ¢ € Iy C I and d € f(I) = Ji,
moreover, F(z) # 0 for all z € I;. Note that since f(z) — f(c) = F(z)(x — ¢), we have y — d =
flg(y)) — flg(e)) = F(g(y))(9(y) — g(d)) for all y € J;. Since F(x) # 0 for all x € I;, we have
g(y) — g(d) = F(g(y))~L(y — d) for all y € J;. Note that the function F(g(y))~! is continuous at d.
Thus, ¢'(d) exists and ¢'(d) = F(g(d))~! = f%(c) as desired. O
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Definition 1.8. Let D be a non-empty subset of R and let g be a real-valued function defined on D.

(i) We say that g has an absolute mazimum (resp. absolute minimum) at a point ¢ € D if
g(c) = g(z) (resp. g(c) < g(z)) for allx € D.
In this case, c is called an absolute extreme point of g.

(ii) We say that g has a local mazimum (resp. local minimum) at a point ¢ € D if there is r > 0
such that (¢ —r,c+1r) C D and g(c) > g(x) (resp. g(c) < g(x)) for allx € (c—r,c+ 7).
In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point,
for example if g(z) := x for x € [0,1], then g has an absolute maximum point at x = 1 of g but 1 is
not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local
extreme point at ¢ € I and f'(c) exists. Then f'(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at ¢. Then there is > 0
such that f(z) > f(c) for x € (c—r,c+r) C I. Since f’(c) exists, by using Proposition 1.2, there is a
function ¢ defined on I such that f(x)— f(c) = ¢(x)(x —c) for all x € I and ¢ is continuous at ¢ with
o(c) = f'(¢). Thus, we have p(z)(x —¢) > 0 for all z € (¢ — r,c+r). From this we see that p(z) >0
as ¢ € (¢, ¢+ r), similarly, p(x) < 0 as x € (¢ — r,c). The function ¢ is continuous at ¢, so p(c) =0
and hence f'(c) = ¢(c) = 0 as desired. O

Proposition 1.11. Rolle’s Theorem: Let f : [a,b] — R be a continuous function. Assume that
f(x) exists for all x € (a,b) and f(a) = f(b). Then there is a point ¢ € (a,b) such that f'(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that
is, there are ¢; and ¢z such that f(c1) = mingeqy f(z) and f(c2) = max,epqy) f(x), hence, f(c1) <
f(z) < f(eg) for all z € [a,b]. If f(e1) = f(ca), then f(z) = f(e1) = f(eo) for all z € [a,b], so f/(z) =0
for all z € (a,b).

Otherwise, suppose that f(ci1) < f(c2). Since f(a) = f(b), we have ¢; € (a,b) or ¢z € (a,b). We may
assume that ¢; € (a,b). Then x = ¢; is a local minimum point of f. Therefore, f'(c1) = 0 by using
Proposition 1.10. O

Theorem 1.12. Main Value Theorem: If f : [a,b] — R is a continuous function and is differen-
tiable on (a,b), then there is a point ¢ € (a,b) such that f(b) — f(a) = f'(c)(b— a).

Proof. Define a function ¢ : [a,b] — R by

M@Zﬂ@—ﬂ@—ﬂ2:§@

for € [a,b]. Note that the function ¢ is continuous on [a,b] with ¢(a) = ¢(b) = 0, in addition, ¢'(x)
exists for all z € (a,b). The Rolle’s Theorem implies that there is a point ¢ € (a,b) such that

0=gl(e) = o) - 1O,

The proof is complete. ]

(z —a)

Corollary 1.13. Assume that f : [a,b] — R is a continuous function and is differentiable on (a,b).
If ' =0 on (a,b), then f is a constant function.
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Proof. Fix any point z € (a,b). Let z € (z,b]. By using the Mean Value Theorem, there is a point
¢ € (z,z) such that f(z) — f(2) = f'(¢)(z — 2). If f/ =0 on (a,b), so f(x) = f(z) for all z € [2,D].
Similarly, we have f(z) = f(z) for all = € [a, z]. The proof is complete. O

Definition 1.14. We call a function f is a C*-function on I if f'(z) exists and continuous on I. In
addition, we define the n-derivatives of f by f(z) := fO=V(x) for n > 2, provided it exists. In
this case, we say that f is a C™-function on I. In particular, we call f a C*-function (or smooth
function) if f is a C™-function for all n = 1,2....

For example, the exponential function exp x is a very important example of smooth function on R.

Corollary 1.15. Inverse Mapping Theorem: Let f be a C'-function on an open interval I and
let c € I. Assume that f'(c) # 0. Then there is r > 0 such that the function f is a strictly monotone
function on (¢ —r,c+1) C I. If we let J := f(c—r,c+7)), then the inverse function g := f~1:J —
(c—r,c+r) is also a Ct-function.

Proof. We may assume that f’(¢) > 0. f’(z) is continuous on I, so there is r > 0 such that f'(z) >0
forallz € (c—7r,c+7r) C I. For any z; and x5 in (¢ —r,,c+r) with 1 < x9, by using the Mean Value
Theorem, we have f(x2) — f(z1) = f'(v)(x2 — x1) for some v € (x1,x2), and hence f(z3) > f(x1).
Therefore the restriction of f on (¢ —r,c+ ) is a strictly increasing function, thus, it is an injection.
Let J:= f((¢c—r,c+r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an
open interval because f is strictly increasing. Also, if we let ¢ = f~! on J, then ¢ is continuous on
J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore,
by Proposition 1.7, we see that ¢'(y) exists on J and ¢'(y) = % fory= f(z) and x € (¢ —r,c+ 7).
Therefore, g is a C' function on .J. The proof is complete. U

Proposition 1.16. Cauchy Mean Value Theorem: Let f,g : [a,b] — R be continuous functions
with g(a) # g(b). Assume that f, g are differentiable functions on (a,b) and ¢'(x) # 0 for all x € (a,b).

- . fB)=f(a) _ f(c)
Then there is a point ¢ € (a,b) such that T0)—s(@) = 719"

Proof. Define a function ¢ on [a,b] by ¥ (x) = f(x) — f(a) — 83 g((a)) (9(x) — g(a)) for x € [a,b]. Then
by using the similar argument as in the Mean Value Theorem, the result follows. g

Theorem 1.17. Lagrange Remainder Theorem: Let f be a C™" Y function defined on (a,b). Let
xo € (a,b). Then for each x € (a,b), there is a point ¢ between xy and x such that

n (k) €T (n+1) Cc
_ Z f k(' 0) (l‘—flf(])k + fén_'_ 1()') (ZB —l’o)n+1.

Proof. We may assume that 2y < z < b. Case: We first assume that f* (mo) =0forallk=0,1,....,n
Put g(t) = (t — zo)"*! for t € [z9,z]. Then ¢'(t) = (n + 1)(t — x9)"™ and g(z¢) = 0. Then by the

Cauchy Mean Value Theorem, there is 21 € (20,z) such that L g; J; Ei; ((m 0 - & (ml)). Usmg the

) g
same step for f’ and ¢’ on [xg, z1], there is x2 € (29, 1) such that L ((;03 L@ 1; )) D(wa)

(o
"(zo

g'(x1)— ()(562)
repeat the same step, there are xy, x9, ...,z 41 in (a,b) such that zj € (a:o,mk 1) for k=1,2,...n+1
and
f@) @) D @)
g(x) — g'(x1) g (241)
In addition, note that ¢g"*!(z,.1) = (n + 1)!. Therefore, we have % = %, and hence

flz) = %(x — x0)" 1. Note z,,41 € (20, 7) and thus, the result holds for this case.



For the general case, put G(z) = f(z) — > 1, A ;{, (x — x0)* for € (a,b). Note that we have

G(zo) = G'(29) = - - - = G™(zy) = 0. Then by the Claim above, there is a point ¢ € (2o, ) such that

(n+1) (¢ . (k ) l? (n+1) (¢ .
Glx) = L. Since GHD(c) = fOHD(0), (o) = Yo L8 (o — wo)* + L2 The proof is
complete. O

Example 1.18. Recall that the exponential function e® is defined by

z . £
€ T2 nll—{goz k!

for x € R. Note that the above limit always exists for all z € R (shown in the last chapter).

Show that the natural base e is an irrational number.

Put f(z) := e® for x € R. It is a known fact f is a C™ function and f(")(z) = ¢® for all z € R. Fix
any > 0. Then by the Lagrange Theorem, for each positive integer n, there is ¢, € (0, ) such that

n k
& xn—i—l
E —‘ .
kOk n+1

In particular, taking x = 1, we have

0< " zn: L3
= e — _—
(n+1)! = k! (n+1)!

for all positive integer n. Now if e = p/q for some positive integers p and ¢, and thus, we have

n

D 1 < 3
q¢ = El " (n+1)!

for all n = 1,2... Now we can choose n large enough such that (n') € N. It leads to a contradiction
because we have

1 3(n!) _ 3

Therefore, e is irrational.

Proposition 1.19. Let f be a C? function on an open interval I and xo € I. Assume that f'(xq) = 0.
Then f has local mazimum (resp. local minimum,) at xo if f®(xg) <0 (resp. f@(zg) > 0).

Proof. We assume that f®) (xg) > 0. We want to show that z( is a local minimum point of f. The
proof of another case is similar. Note that for any = € I\ {z¢}. Then by the Lagrange Theorem, there
is a point ¢ between xy and x such that

£(&) = Fwo) + F'(o) = 0) + 3 fD @) (& — 20)* = flmo) + 5P (o) — w0)*

f® is continuous at z¢ and f®)(x) > 0, and so there is r > 0 such that f®(z) > 0 for all
x € (xg — 1,20 + 1) C I. Therefore, we have

£() = fwo) + 5P (@) @ — 20)? 2 (o)

for all x € (zg — r,zp + r) and thus, z is a local minimum point of f as desired. O
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Proposition 1.20. L’Hospital’s Rule: Let f and g be the differentiable functions on (a,b) and let
c € (a,b) Assume that f(c) = g(c) =0, in addition, ¢'(x) # 0 and g(x) # 0 for all x € (a,b) \ {c}. If
!/
the limit L := lim = exists, then so does lim —w, moreover, we have L = lim &
a—c g'(x) a—c g(x) z—c g(x)

Proof. Fix ¢ < # < b. Then by the Cauchy Mean Value Theorem, there is a point x; € (¢, x) such

that )

@) _ f@) = fe) _ f')

g(x)  g(@)—glc)  g'(z1)

/
x1 € (¢,x), so if L := lim f/(x) exists, then lim /(@) exists and is equal to L.
T—c g (x) r—rc+ g(x)
Similarly, we also have lim M = L. The proof is finished. O
z—c— g(x)

Proposition 1.21. Let f be a function on (a,b) and let ¢ € (a,b).
(i) If f'(c) exists, then the following limit exists (also called the symmetric derivatives of f at c):

Fe)— i T = Sle =)

t—0 2t

(i) If f@(c) ewists, then
FO (o) = pim LTV =2+ fle=b)

t—0 t2

Proof. For showing (i), note that we have

) i FEED I Fet ) = f)
t—0+ t t—0— t
Putting ¢t = —s into the second equality above, we see that
oy o fle—s)— fle)
f (C) N 51—1>%1+ —S .

To sum up the two equations above, we have

fle+t)—fe—t)

/ T
fle) = t1—1>I(])a+ 2t
t) — —1
Similarly, we have f/(c) = tli%l flet )2t fle ) Part (7) follows.
rey il

For showing Part (ii), let h(t) := f(c+1t) —2f(c) + f(c —t) for t € R. Then h(0) = 0 and A/(t) =
f'(c+t)— f'(c —t). By using the L’'Hospital’s Rule and Part (i), we have

_ _ / / _f! _
g LED 2@ b fle=t) o HO Pt et )
0 t2 t=0 (t2))  t=0 2t
The proof is complete. O

Definition 1.22. A function f defined on (a,b) is said to be convex if for any pair a < x1 < x3 < b,
we have

f(A =)z +txg) < (1 —1)f(z1) +1f(22)
for all t € [0,1].

Proposition 1.23. Let f be a C? function on (a,b). Then f is a convex function if and only if
f@(z) >0 for all x € (a,b).



7

Proof. For showing (=): assume that f is a convex function. Fix a point ¢ € (a,b). f is convex, so
we have f(c) = f(3(c+t)+3(c—1t) < if(c+t)+3f(c—1t) forall t € R with ¢+t € (a,b) . By
Proposition 1.21, we have

FP(e) = lim flet+t) =2f(c) + flc—1)

t—0 t2

Therefore, we have f(2)(¢) > 0.

For (<), assume that f®)(z) > 0 for all z € (a,b). Fix a < 21 < x2 < band t € [0,1]. Let
¢ := (1 —t)x1 + txa. Then by the Lagrange Reminder Theorem, there are points z; € (x1,¢) and
z9 € (¢, x2) such that

Fl@2) = F(0) + (s — ) + 3 f D (z2) (w2 — )
and
Fle) = £+ F@)r = ¢)+ 3O - o),

These two equations implies that

(1= 1)F () + 1£(22) = £€) + (1 =13 F ) — ) + 15O ()2 — 0 > £(6).
since f®)(21) and f)(23) both are non-negative. Thus, f is convex. O

Corollary 1.24. Let p > 0. The function f(x) := aP is convex on (0,00) if and only if p > 1.

Proof. Note that f®)(z) = p(p — 1)zP=2 for all z > 0. Then the result follows immediately from
Proposition 1.23. O

Proposition 1.25. Netwon’s Method: Let f be a continuous real-valued function defined on [a,b]
with f(a) <0 < f(b) and f(z) =0 for some z € (a,b). Assume that f is a C* function on (a,b) and
f'(x) #0 for all x € (a,b). Then there is § > 0 with J := [z — 0, 2+ ] C [a,b] which have the following
property:

if we fix any x1 € J and let

f'(zn)

(1.1) Tptl 1= Ty —

forn=1,2,..., then we have z = lim z,,.

Proof. We first choose r > 0 such that [z — 7,z + 7] C (a,b). We fix any point z1 € (z —r, z + r) with
x1 # z. Then by the Lagrange Remainder Theorem, there is a point £ between z and ;1 such that

0=f(2) = flar) + f'(a1)(z — ;1) + %f@)(f)(z )2

This, together with Eq 1.1 above, we have

_ fl@) @ 2
B _f'(xl) —romT 2f’($1)(z o)
Therefore, we have
(2)
(1.2) Ty — 2z = &(z—xl)?
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Note that the functions f'(z) and f®)(x) are continuous on [z — r, z 4+ r] and f'(x) # 0, hence, there
is M > 0 such that ]g?,gg% < M for all u,v € [z — 7,2+ r]. Then the Eq 1.2 implies that

F2(E)
2f'(x1)
Choose § > 0 such that Md < 1 and J :=[z— 0,2+ 9] C (2 —r,z + ). Note that Now we take any

r1 € J. Eq 1.3 implies that |z3 — 2| < M - |z — 21|> < (MJ) - |21 — z|. By using Eq 1.1 inductively, we
have a sequence (z,,) in J such that

@it — 2 < M- |z = 22 < (M) - | — 2]
for all n = 1,2.... Therefore, we have
[Tt — 2| < (MO)" - [y — 2]

for all n = 1,2..., thus, limz,, = z. The proof is complete. O

(1.3) |z — 2| = | (z—z1)?| < M(z — 1)

Appendix: Differentiability on R”

Recall that for each element z = (1, ..., 7,,) in R?, write ||z|| := v/]z1[2 + -+ + |2,]? (call the norm
of ). And for @ € R™ and r > 0, put B(a,r) :={z € R" : ||z —a|| < r}.

Lemma 1.26. FEvery linear map on R™ is continuous.

Proof. Let T : R™ — R™ be a linear map and let {ey,...,e,} be the natural basis for R™. It suffices

to show that the map 7' is continuous at 0 (why?). Let (x;) be a sequence in R" that converges

to 0. If we write z; := > ;_, ti(k)eg, then lim ¢;(k) = 0 for all £ = 1,...,n. This implies that
1—00

1—00

n
lim T'(x;) = Zzli}?o ti(k)Ter = 0 as desired. O
k=1

Remark 1.27. Notice that a linear map on an infinite dimensional space may not be continuous.
For example, we consider an infinite dimensional vector space E = |J;2 | R™ whose norm is given by
|zl| = Y22y z(k)? for x = (x(k))3, € E. Define T : E — E by Tx(k) := ka(k) for k =1,2,.... for
x € E. Then T is a linear map but it is discontinuous at 0 (why?).

If you want to know more details about the infinite dimensional case, take the course of Functional

Analysis in future.

Definition 1.28. Let U be an open subset of R™ and let f : U — R™ be a mapping. We say that f
is differentiable at a point a € U if there is a (continuous) linear map L(a) : R™ — R™ such that
| fla+v) = f(a) = L(a)(®)[rm

(1.4) lim

= 0.

L(a) is called a differential of f at a. f is said to be differentiable on U if it is differentiable at every
point in U.

Proposition 1.29. We keep the notation as given in Definition 1.28. Then we have the followings.
(i) f is differentiable at a € U if and only if there are a linear map L(a) : R™ — R™ and a function

ala,:) : U — R™ such that

(1.5) f(x) = f(a)+ L(a)(z — a) + a(a,z) for allz €U and lim lata, )l _ 0.

2a [lz —al



(ii) If f is differentiable at a, then f is continuous at a.
(iii) A differential of f at a € U is unique if it exists.

From now on, we write f'(a) for the differential of f at a.
Proof. For Part (i)(=), if f is differentiable at a, then we put

afa,z) := f(z) - f(a) — L(a)(z — a)

l[ev(a,2)||

—al = 0 as desired. The converse is clear.

for x € U. Then Eq 1.4 implies that lim,_,,
(a2
[z—all
0. Thus, limy_,(f(x) — f(a)) = 0 by Eq 1.5 because every linear map is continuous. For showing
(#i7), let Li(a) and La(a) be the linear maps from R™ to R™. Let aq(a,-) and ay(a, ) be the functions

given as in Part (7). From this we have

For Part (ii), we keep the notation as in Part (7). Since lim,_, = 0, we have lim,_,, [|a(a, z)| =

Li(a)(z —a) + ai(a,z) = La(a)(z — a) + az(a, )
for all z € U. Now choose r > 0 such that B(a,r) C U and so we have Li(a)(v) + ay(a,a +v) =
La(a)(v) + ag(a,a + v) for all v € B(0,r). Now if we fix 0 # v € B(0,r), then we have

Li(a)(tv) + a1(a,a + tv) = Lao(a)(tv) + as(a, a + tv)
for all 0 < ¢ < 1. From this, taking t — 0+, we have Li(a)(7>7) = Lg(a)(HZ—H) and thus, Lj(a)(v)

ol
Lso(a)(v) for all 0 # v € B(0,r). Then by the linearity of L;(a) and La(a), we conclude that L (a)(v)

La(a)(v) for all v € R™. The proof is complete.

Ol

Proposition 1.30. Chain Rule: Let f : U — V and g : V — R! be the mappings where U and V
are the open subsets of R™ and R™ respectively. Let a € U and put b := f(a). If f'(a) and ¢'(b) both
exist, then (go f)(a) exists and (go f) (a) = ¢'(b) o f'(a) : R® — R,

Proof. Puty = f(z). Let a(a,-) : U — R™ and B(b,-) : V — R be the functions given as in Proposition
1.29 above. Notice that we have
f(@) = f(a) + f'(a)(z — a) + a(a, x)
for all z € U and
9(y) = g(b) + ¢'()(y — b) + B(by)

for all y € V. From this we have

gof(z)=gofla)

=go f(a)

+4'(0)(f(z) — f(a)) + B(f(a), f(=))
+4'(0)f'(a)(z — a) + ¢'(b)(ala, ) + B(f(a), f(z))
for all x € U. Let

v(a,2) == g'(b)(ala, 2)) + B(f(a), f(2))

for x € U. Then by Proposition 1.29, we need to show that
lim @2 _

voa lz—a] ~

aa,x)

Te—an = 0 and every linear map is continuous , we have lim; 4 g (b)(&z)) = 0. Hence,

lz—all
it suffices to show that lim,_., f;ﬁgf‘ =0.

In fact, let € > 0, then by the construction of 3(b,y), there is 41 > 0 such that
18(b,y)|l

== < e whenever 0< |ly—b| < d;.
16—yl

Since lim,_,,
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Since f is continuous at a, there is d2 > 0 such that ||y — b|| < 6; whenever 0 < ||z — a|| < d2. On the
other hand, we have

b—y , r—a a(a, )
= ['(a)( )+ :
[l — all [z —all” "z = al
forallz € U\{a}. Since f’(a) : R™ — R™ is continuous and the unit sphere S,,_1 := {v € R" : ||v]| = 1}
is compact, we have

r—a
Hf'(a)(H — I < sup [[f'(a)(v)]| < oo
€T a’H ’UESTL71
for all z € U\{a}. Also, thereis 0 < § < d2 such that x € U and % <1las0< |[x—al| <¢. Thus,
there is M > 0 such that ‘|‘|£:Z|||| < M whenever 0 < ||z — a|| < ¢. This implies that if y = f(z) # b
and 0 < ||z — al| < ¢, then we have
b b b—
5. _ 186,01 b=l _ _,,
lz—all b=yl |z —a
Notice that 5(b,y) = 0 if y = b. Therefore, if 0 < ||z — a|| < J, then we have
b
5G
[l — all
The proof is complete. O

To end this appendix, we are going to define the higher order differentials of f. Before giving the
definition, let us recall the notation of multilinear maps. Let F and F be vector spaces. A mapping
T:E x---x E(r-copies) — F'is called a r-linear map if 7" is linear for each variable, more precisely,
for 1 <k <randxy,...25_1,Tks1,...., o, € E, themap x € E+— T(21, ..., Tp—1, %, Tkt 1, ..., Tr) € F i8
linear. Write L(")(E, F) for the set of all r-linear maps. Clearly, L(")(E, F) is a vector space.

Lemma 1.31. L) (R? R™) = R™™ for r = 1,2, ... Consequently, the space L") (R™, R™) have the
norm structure induced by R™ ™.

Proof. Clearly, we have L(D(R™,R™) = M,,xn(R) = R™. Notice that we have L&) (R",R™) =
LR, LO(R", R™)) and so, L&) (R", R™) = R"*™. Using induction on 7, we see that L) (R", R™)
R ™,

oo

Definition 1.32. We keep the notation as in Definition 1.28. Notice that if f is differentiable on U,
then the differential of f gives a map

flraeUw f'(a) e LYRY,R™).
Note that the space L(l)(R”,Rm) have the natural norm structure given by Lemma 1.31, that is,

LM (R™, R™) = R"™™. If f is differentiable on U in the sense of Definition 1.28, then for each a € U,
it is naturally led to define

f(2)(a) — (f/)/(a) e L(l)(Rn,L(l)(Rn,Rm)) — L(z)(Rn,Rm) _ ]Ran-
Thus, one can define inductively the r-th differential of f at a as the following
F(a) = (f7")(a) € LR, R™).
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2. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P : a = 29 < 21 < .... < x, = b denote a partition on [a,b]; Put Ax; = x; — z;—1 and
I|IP|| = max Az;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [xi_1, 2}
Set wl(f, P) = Mz(f, P) - ml(f, P)

(iv): (the upper sum of f): U(f, P) = > M;(f, P)Ax;
(the lower sum of f). L(f,P):=>_ m;(f, P)Ax;.

Remark 2.1. [t is clear that for any partition on [a,b], we always have
(i) m(b— a) < L(f, P) < U(f, P) < M(b—a).
(it) L(=f,P) = =U(f, P) and U(—f,P) = —L(f, P).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f,P) < L(f,Q) if P C . By using the induction on
[ .= #Q — #P, it suffices to show that L(f, P) < L(f,Q)asl=1. Let P:a=ao<z1 < - <xp=0>
and @ = PU{c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f, P) < min{m,(f,Q), ms1(f,Q)}.
So, we have
ms(f7 P)(xs - xs—l) S ms(fa Q)(C - xs—l) + ms-l—l(fv Q)(xs - C)'
This gives the following inequality as desired.
(21) L(f7 Q) - L(f7 P) = ms(fa Q)(C - xs—l) + ms-l—l(fu Q)(-Ts - C) - ms(fa P)(l‘s - xs—l) > 0.

Now by considering — f in the Inequality 2.1 above, we see that U(f,Q) < U(f, P).
For Part (ii), let P and @ be any pair of partitions on [a,b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q € PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on |a,b]. The upper integral (resp. lower integral) of f
over [a, b], write f;f (resp. f:f), is defined by

b
/ f=mf{U(f, P): P is a partation on [a,b]}.
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(resp.
b
/ f=sup{L(f,P) : P is a partation on [a,bl]}.)

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, <) a directed set if for each pair of elements i1
and i9 in I, there is i3 € I such that i1 <3 and 79 < i3.

A net in R is a real-valued function f defined on a directed set I, write f = (x;);cs, where z; := f(7)
forie 1.

We say that a net (z;) converges to a point L € R (call a limit of (x;)) if for any € > 0, there is iy €
such that |z; — L| < ¢ for all i > 4.

Using the similar argument as in the sequence case, a limit of (x;) is unique if it exists and we write
lim; x; for its limits.

Example 2.5. Appendix: Using the notation given as before, let
I:={P: P is a partitation on [a,b] }.
We say that P, < P, for P, P, € I if P C P,. Clearly, I is a directed set with this order. If we put
up = U((f, P), then we have
b
li = :
imup /a f

In fact, let € > 0. Then by the definition of an upper integral, there is Py € I such that

/abeU(f,Po) S/abera

Lemma 2.2 tells us that whenever P € I with P > Fy, we have U(f,P) < U(f, ). Thus we have
lup — fff\ < ¢ whenever P > Py as desired.

Proposition 2.6. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
() o
/ab r< 't

(ii) [2(~f)=—[it.
(1)

/abf+/abgg/ab<f+g>g/ab(fms/:ﬁ/abg.

Proof. Part (i) follows from Lemma 2.2 at once.

Part (i¢) is clearly obtained by L(—f, P) = —=U(f, P).

For proving the inequality fff + f;g < f;(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <
L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
2.2, we have

b
L(f,P1)+ L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f +g,PLUP) < / (f +9).
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So, we have

(2.2) / / /f+g

As before, we consider —f and —g in the Inequality 2.2, we get [ ; (f+g9) < fo f —i—fjbg as desired. O

The following example shows the strict inequality in Proposition 2.6 (i7i) may hold in general.

Example 2.7. Define a function f,g:[0,1] - R by

1 if x€[0,1]NQ;
J(@) = {—1 otherwise.
and
() = -1 if ©e€l0,1]NQ;
9= 1 otherwise.

Then it is easy to see that f + g =0 and

So, we have

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if fbaf = f;f In this case, we write f;f for this common value and it is called the Riemann integral
of f over [a,b).

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 2.9. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Ozf;f + Bffg for all
1,9 € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if @ > 0, it is clear that Tabaf = aﬁ’f = afabf -
O‘f;f = fabaf- Also, if v < 0, we have fabaf = Oéfabf = Oéf:f = Oéf:f = f;af. Therefore, we have

f:af = af;f for all & € R. For showing f + ¢g € R[a,b] and f;(f—i—g) = fff+f;g, these will
follows from Proposition 2.6 (iii) at once. The proof is finished. O
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The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=xzg <z <--- <z, =band 1 <7 <n, put
wi(f, P) = sup{|f(z) — f(2')] : #,2" € [wi—1, wi] }.
It is easy to see that U(f, P) — L(f, P) = >, wi(f, P)Ax;.

Theorem 2.10. Let f be a bounded function on [a,b]. Then f € R|a,b] if and only if for all € > 0,
there is a partition P:a =x9 < --- <z, = b on [a,b] such that

(2.3) 0 <U(f,P) = L(f.P) =) wi(f, P)Az; <e.

i=1
Proof. Suppose that f € Ra,b]. Let € > 0. Then by the definition of the upper integral and lower
integral of f, we can find the partitions P and @ such that U(f, P) < f;f +¢ and f;f —e < L(f,Q).
By considering the partition P U (), we see that o

/f—e<L(f,Q><L<f PUQ)<U(f,PUQ) < U(f,P /f+6

Since fff = faf = faf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition P U @ is as
desired. o

Conversely, let € > 0, assume that the Inequality 2.3 above holds for some partition P. Notice that
we have

L(J.P) < /b fs/abfswf,m.

So, we have 0 < E’f - f;f < ¢ for all € > 0. The proof is finished. ]

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over [a,b] if
and only if the “size” of the discontinuous set of f is arbitrary small. See the Appendiz 3 below for
details.

Example 2.12. Let f:[0,1] — R be the function defined by

- |

Then f € R[0,1].

(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] N Q = {21, 22, ....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;2{zi}) = Yooy m({zi}) = 0, in here, you may think that the size of
each set {z;} is 0. )

Proof. Let € > 0. By Theorem 2.10, it aims to find a partition P on [0, 1] such that
U(f,P) —L(f,P) <eg

Notice that for z € [0, 1] such that f(x) > € if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with % > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive

integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > e}, then S is a finite subset

if r = f, where p, q are relatively prime positive integers;

O QI

otherwise.
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of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =129 < -+ < x,, = 1,
we have

Yowilf,P) Az =( Y.+ > ) wlf,P)Ax;
=1 ’L':[{L‘ifl,fl‘i]ﬂSZQ) i:[x,',l,xi]ﬁs#@
Notice that if [z;-1,2;] NS = ), then we have w;(f, P) < e and thus,
Z wi(f,P)Azx; <e Z Az; <e(1-0).
i:[xifl,xi]ﬁSZ(D i:[xi,l,xi}ﬂS:Q)

On the other hand, since there are at most 2L sub-intervals [z;_1, x;] such that [z;_1,z;] NS # () and
wi(f,P) <1foralli=1,..,n,so, we have

S wlf,P) Az <1 Y A <2L|P).
z‘:[mi_l,zi]ﬂS;ﬁ@ i:[mi_l,xi}ﬂSyﬁ@

We can now conclude that for any partition P, we have
n
> wi(f, P)Az; < e+ 2L||P|.
i=1

So, if we take a partition P with ||P|| < e/(2L), then we have Y " ; w;(f, P)Ax; < 2e.
The proof is finished. O

Proposition 2.13. Let f be a function defined on [a,b]. If f is either monotone or continuous on

[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = xg < --- < z,, = b, we have w;(f, P) = f(x;) — f(zi—1). So, if
|P|| < e, we have

n

D owilf, P) Az =Y (fzi)=flia))Aay < ||P| Y (fzi) = f(zia)) = |PI(f(b)=F(a)) < e(f(b)~f(a)).
i=1 i=1 i=1
Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any £ > 0,
there is 6 > 0 such that |f(z) — f(2)| < € as x, 2’ € [a,b] with |z — 2’| < J. So, if we choose a partition

P with ||P|| < 6, then w;(f, P) < ¢ for all 5. This implies that

Zwi(f, P)Ax; < EZA(IZZ' =¢e(b—a).
i=1 i=1

The proof is complete. U

Proposition 2.14. We have the following assertions.

(i) If f,g € Rla,b] with f < g, then f;f < f;g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |fff| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

b b b b
we have [ f= ["f< ['9=["g.
For Part (i7), the integrability of | f| follows immediately from Theorem 2.10 and the simple inequality
171G") — [l < [f@') — F(@")] for all #/,a" € [a,b]. Thus, we have U(f], P) — L(f],P) <
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U(f,P)— L(f,P) for any partition P on [a, b].
Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Lemma 2.15. Let g be a convex function defined on [a,b]. Then for a < c¢ <z < d < b, we have
9(z) —g(c) _ 9(d) —g(z)

T —c d—x

Consequently, if a < x1 < x9 < x3 < x4 < b, we have

g(z2) — g(z1) < g(z4) — 9(333).

T2 — 21 Ty — X3

Proof. Let £(x) be the straight line between the points (¢, g(c¢)) and (d, g(d)). Then we have g(x) < ¢(x)
for all = € [¢,d] by the convexity. This implies the following that we desired.

9(z) —g(e) _ Uz) = le) _ Ud) — lz) _ g(d) —g(z)

T —c - T —c d—=x - d—=x

(2.4)

0

Proposition 2.16. (Jensen’s inequality): Let g : [d/,b']] — R be a convex function and f €
R([0,1]) such that f(]0,1]) C [a,b] C (a’,V') and go f € R(]0,1]). Then we have

1 1
o[ 1) < [ (g0 Nye

Proof. Notice that if we let ¢ := fol f, then ¢ € [a,b] and hence, g(c) is defined. Notice that by Eq2.4
above the set {% :a < x < ¢} is bounded above and so, s := sup{%‘g(y) cd <y<c}is
defined. Thus, we have

glc) —gly) <s(c—y) forald <y<ec.
On the other hand, if ¢ < y; < ¥/, then by Eq2.4 again we have

9(c) —9(y) _ 9(y1) — g(c)
c-y  hn—c

forall d’ <y <ec.

(y1)—g(c)

Hence, we have s < £ = for all ¢ < y; < b'. Thus, we have

(2.5) g(c) —gly) <s(c—y) forallad <y <V withy#c.
Note that Eq 2.5 clearly holds for y = ¢. Thus, Eq2.5 is true for all a’ <y < ¥. Now if put y = f(x),
then we have g(c) + s(f(z) —c¢) < (go f)(x) for all z € [0,1]. This gives

1 1
o0) = 9(0)+5 [ (fa) = o < [ (o N@yte

The proof is complete. O

Example 2.17. Let ay,...,a, be any real numbers. Let p > 1. Then we have

jar] + - lanly, 1§
(T”)p < ﬁzlak’p'
k=1

To see this, , the results obtained by applying the Jensen’s inequality for the convex function g(z) = xP

forxz >0 and f(t) := |ag| fort € [(k—1)/n,k/n) for k=1,...,n.
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Proposition 2.18. Let a < c < b. We have f € Rla,b] if and only if the restrictions fli, € Rla, (]
and [l € Rlc,b]. In this case we have

(2.6) /abf=/acf+/cbf-

Proof. Let f1 := f’[a,c} and fo := f’[c,b]'
It is clear that we always have

U(fr, 1) = L(f1, P1) + U(fa, Ba) = L(f2, P2) = U(P, f) = L(f, P)

for any partition P; on [a,c] and P, on [¢,b] with P = P, U P.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since f € R[a,b], for any € > 0, there is a partition @ on [a, ]
such that U(f, Q) — L(f,Q) < € by Theorem 2.10. Notice that there are partitions P; and P on [a, ]
and [c, b] respectively such that P := Q U {c} = P U P,. Thus, we have

U(fi,P1) — L(f1, P1) + U(f2, P2) — L(f2, P2) = U(f,P) — L(f,P) <U(f,Q) — L(f,Q) < e.

So, we have f1 € Rla,c| and f2 € R]c, b].
It remains to show the Equation 2.6 above. Notice that for any partition P; on [a,c] and P on [c, b],
we have

b b
L(fl,P1)+L(f2,P2)=L(f7P1UP2)S/f=/ e

So, we have fac f+ fcb < ff f- Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 2.10. (|

Proposition 2.19. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise
product function f - g € Rla,b].

Proof. We first show that the square function f? is Riemann integrable. In fact, if we let M =
sup{|f(z)| : € [a,b]}, then we have wy(f2, P) < 2Mwy(f, P) for any partition P : a = zg < --- <
an = b because we always have |f2(z) — f2(2')| < 2M|f(z) — f(2')| for all z,2" € [a,b]. Then by
Theorem 2.10, the square function f? € R[a, b].

This, together with the identity f-g = %((f +9)? — f?2 — ¢°). The result follows.

O

Remark 2.20. In the proof of Proposition 2.19, we have shown that if f € Rla,b|, then so is its
square function f?. However, the converse does not hold. For exzample, if we consider f(z) = 1 for

r€QnJ0,1] and f(z) = —1 for x € Q°N[0,1], then f ¢ R[0,1] but f2=1 on [0,1].

Proposition 2.21. Assume that f : [a,b] — [c,d] is integrable and g : [c,d] — R is continuous.
Then the composition g o f € R[a,b].

Proof. Let € > 0. Note that ¢ is uniformly continuous on [¢, d] because g is continuous on [, d]. Then
there is 6 > 0 such that |g(y) — g(¢')| < € whenever y,y’ € [c,d] with |y — 3’| < d. On the other hand,
since f € RJa,b], there is a partition P on [a,b] such that Y wi(f, P)Axy < £d. Hence, we have

§ Y Az<s Y wilf, P)Awg <é&d.

kiwi (f,P)26 kwy (f,P) 26

Z Az < €.

ki (f,P)26

This implies that
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On the other hand, by the choice of §, we see that wi(go f, P) < € whenever wg(f, P) < §. Therefore,
we can conclude that

Y wr(go fiP) Az = Y wilgo f,P)Az+ > wilgo f, P)Azy, < e(b—a) +2Me
k k:wg (f,P)<d k:wg (f,P)>8

where M := sup |f(x)|. The proof is complete. O

Remark 2.22. The composition of integrable functions need not be integrable. For example, if we
put f is given as in Example 2.12 and g(z) = x for x = 1/n,n = 1,2, ...; otherwise g(x) = 0. Then
f,9 € R[0,1] but go f ¢ R[0,1].

Proposition 2.23. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on |a,b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point & € (a,b) such that

b b
(2.7) / f(@)g(x)de = £(€) / o(x)dz.

In particular, there is a point & in (a,b) such that f(£) = 7= f; f(x)dx

Proof. By the continuity of f on [a, ], there exist two points x1 and x2 in [a, b] such that
f(z1) =m :=min f(x); and f(z2) = M := max f(x).

We may assume that a < x1 < x9 < b. From this, since g < 0, we have

mg(z) < fz)g(x) < Myg(x)

for all = € [a,b]. From this and Proposition 2.19 above, we have

b b b
m/gg/MSM/g
a a a

So, if f; g = 0, then the result follows at once.
We may now suppose that | ; g > 0. The above inequality shows that

fg
Yy

Therefore, there is a point £ € [x1,x2] C [a, b] so that the Equation 2.7 holds by using the Intermediate
Value Theorem for the function f. Thus, it remains to show that such element £ can be chosen in
(a,b).

Let a < x1 < 9 < b be as above.

If 1 and z9 can be found so that a < 1 < z9 < b, then the result is proved immediately since
€ € [x1,m2] C (a,b) in this case.

Now suppose that x7 or zo does not exist in (a,b), i.e., m = f(a) < f(x) for all z € (a,b] or
f(z) < f(b) = M for all z € [a,b).

Claim 1: If f(a) < f(z) for all x € (a,b], then f fg> f(a f g and hence, & € (a,z2] C (a, b].

For showing Claim1, put h(z) := f(z) — f( ) for x € [a,b]. Then h is continuous on [a,b] and h > 0
on (a,b]. This implies that fcd h > 0 for any subinterval [c,d] C [a,b]. (Why?)

On the other hand, since fbg = fbg > 0, there is a partition P : a = 29 < -+ < x, = b so that
L(g, P) > 0. This implies that mg(g, P) > 0 for some sub-interval [z;_1,xg]. Therefore, we have

/hg>/ hg > my(g, )/ h > 0.
1

m = f(z1

(z2) = M.
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Hence, we have f fg> f(a f g. Claim 1 follows.

Similarly, one can show that if f(z) < f(b) = M for all = € [a,b), then we have f fg < f(b f g.
This, together with Claim 1 give us that such £ can be found in (a,b). The proof is finished. O

s
Example 2.24. We have lim/ sin"zdx = 0. To see this, for any 0 < € < 7/2 and for each

n=1,2..., the Mean value theorem gives a point &, € (0,5 — ¢€) such that

0</ sin” zdx = ( / / sin”™ zdzx
0

/2
<sin" g, / sin zdz + / sin” xdx
0

T _
26

< sinn_l(g —e)+e.

Taking n — oo, we have lim,, fOW/Z sin” xdx = 0. The proof is finished.

Now if f € Rla,b], then by Proposition 2.18, we can define a function F : [a,b] — R by

0 ifec=a
(28) Fle) = {f;f ifa<e<b.

Theorem 2.25. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.
(i) If there is a continuous function F on [a,b] which is differentiable on (a,b) with F' = f,
then fff = F(b) — F(a). In this case, F is called an indefinite integral of f. (note: if
Fy and F5 both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Fy = F1 + constant).
(ii) The function F defined as in Eq. 2.8 above is continuous on [a,b]. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a =z < -+ < x, = b, then by the Mean Value
Theorem, for each [x;_1,z;], there is §; € (z;_1,x;) such that F(z;) — F(z;—1) = F'(&)Axz; = f(&§)Ax;.
So, we have

P) <Y f(&)Awi =Y F(z;) = F(zi1) = F(b) — F(a) <U(f, P)

for all partitions P on [a,b]. This gives

/abfz/abeF@)—F(a) S/abfz/abf
as desired. o

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(z)—F(c)| = | [T f] < M(xz—c). So, limy_,cq F(z) = F(c). Similarly, we also have lim,_,. F(z) =
F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any ¢t > 0 with a < ¢ < ¢+t < b, we have

inf f(x)gl(F( +1) / f< sup f(x).

x€[c,c+1] t z€[c,c+t]
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1 1
Since f is continuous at ¢, we see that thr(ﬁr g(F(c—i—t) —F(c)) = f(c). Similarly, we have tlim —(F(c+
—

—0—t

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O

Definition 2.26. For each function f on |a,b] and a partition P : a = x9 < --- < x, = b, we call
R(f,P,{&}) = Zivzl f(&)Ax;, where & € [xi—1,x;], the Riemann sum of f over [a,b].
We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P| — 0, write A =

”11}|]|fn R(f,P,{&}), if for any € > 0, there is 6 > 0 such that
—0

‘A—R(f,P,{fz})’ <e
whenever | P|| < ¢ and for any & € [xi—1,x;].

Proposition 2.27. Let f be a function defined on [a,b]. If the limit lim R(f, P,{&}) = A euwists,

li
[P||—0
then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
- < @y, = bsuch that | Y ) f(&)Ax| < 1+ |A| for any &, € [z_1,2]. Since f is unbounded, we
may assume that f is unbounded on [a, z1]. In particular, we choose & = xy, for k = 2,...,n. Also, we
can choose ¢ € [a, z1] such that

[F(ED1AZL < 1+ [A]+ ) flay) Ayl
k=2

It leads to a contradiction because we have 1 + [A| > |f(&)|Az1 — | D p—y f(xr)Azy|. The proof is
finished. O

Lemma 2.28. f € Rla,b|] if and only if for any € > 0, there is 6 > 0 such that U(f,P) — L(f,P) <e¢
whenever || P|| < 0.

Proof. The converse follows from Theorem 2.10.

Assume that f is integrable over [a, b]. Let & > 0. Then there is a partition @ : a = yo < ... < y; = bon
[a, b] such that U(f,Q) — L(f,Q) < . Now take 0 < 6 < &/l. Suppose that P:a =20 < ... <xp, =10
with ||P|| < ¢. Then we have

U(f,P)— L(f,P)=1+1I
where
I = Z wi(f, P)Ax;;
QN[ —1,x;]=0
and
IT = > wilf,P)Ax
:QN[wi—1,2i]#0
Notice that we have
I<U(f.Q) - L(f,Q) <e
and
I<(M-m)y > A< (M—m)-2l-§:2(M—m)e.
QN[ —1,m;]F#0
The proof is finished. O
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Theorem 2.29. f € Ra,b] if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f, P,{&}) converges to / f(x)dx as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have

and )
L(.P) < [ f)ds <UP)
for any partition P and &; € [z;_1, x;].
Now let ¢ > 0. Lemma 2.28 gives 6 > 0 such that U(f, P) — L(f, P) < ¢ as |P|| < §. Then we have
b
[ f@do— R PG| <

b
as ||P|| < 6 and & € [x;—1,z;]. The necessary part is proved and R(f, P, {&;}) converges to / f(z)dz.
For (<) : assume that there is a number A such that for any € > 0, there is 6 > 0, we havea
A_6<R(fapa{‘£i}) <A+e

for any partition P with ||P|| < ¢ and & € [xi—1, ;).

Note that f is automatically bounded in this case by Proposition 2.27.

Now fix a partition P with ||P|| < 6. Then for each [z;_1,x;], choose & € [z;—1,z;] such that
M;(f,P) —e < f(&). This implies that we have

U(f,P) —5(()-0,) < R(f7pu{§z}) < A+6
Thus, we have shown that for any € > 0, there is a partition P such that
b
(2.9) / f(x)dx <U(f,P)<A+e(l+b—a).

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 2.9 will
imply that for any € > 0, there is a partition P such that

A—5(1+b—a)S/bf(:v)dx§/bf(x)dx§A+e(1+b—a).

The proof is complete. O

Proposition 2.30. Let f € Cle,d]. Let ¢ : [a,b] — [c,d] be a function with ¢(a) = ¢ and ¢(b) = d.
Assume that ¢ is a C' function over [a,b], that is, ¢’ can be extended to a continuous function on
[a,b]. Then we have

d b
/f@MZ/fWMMWt

Proof. Notice that since f is continuous on [c,d], the Fundamental Theorem of Calculus yields an
indefinite integral F' of f on [c,d]. Put h(t) := F o ¢(t) for t € [a,b]. Then by the chain rule, we see
that h/(t) = F'(¢(t))-¢'(t) = f(P(t))-¢'(t) for t € (a,b). Using the Fundamental Theorem of Calculus

again, we have

b b d
/ flo() - ¢'(t)dt = / K (t)dt = h(b) — h(a) = F(d) — F(c) = / f(z)dz.
The proof is finished. O]
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The following theorem shows us that the assumption of the continuity of f in Proposition 2.30 can
be replaced by a weaker condition.

Theorem 2.31. (Change of variable formula): Let f € R[c,d]. Let ¢ : [a,b] — [c,d] be a C!
function over [a,b] with ¢(a) = ¢ and ¢(b) = d satisfying ¢’ > 0. Then f o ¢ € R[a,b|, moreover, we

have
d b
/ f(@)de = / F(E)@ (1)t

Proof. Let A = fcd f(z)dz. By using Theorem 2.29, we need to show that for all € > 0, there is § > 0
such that

[A =" F($(E)) (&) At| < &

for all & € [tx—1,tx] whenever Q :a =1ty < ... < t, = b with [|Q] < 0.
Now let € > 0. Then by Lemma 2.28 and Theorem 2.29, there is §; > 0 such that

(2.10) A=Y flm)Dayl < e
and
(2.11) Zwk(f, P)Axy, < e

for all n € [xx—1,xk] whenever P:c =z < ... < Ty, = d with ||P|| < d;.

Now put = = ¢(t) for t € [a, b)].

Note that there is § > 0 such that |¢(t) — ¢(t')| < 01 and [¢/(t) — ¢/(¥')| < € for all ¢,t’ € [a,b] with
|t —t'| <.

Now let Q :a =1ty < ... <ty =0bwith |Q| < ¢. If we put x, = ¢(t;), then P:c=2p < .... <z, =d
is a partition on [c,d] with || P|| < 01 because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t,_1,], there is { € (tx—1,tx) such that

Az = ¢(t) — ¢(tr—1) = ¢/ (&) Aty

Now for any & € [tx—1,tk], we have

|A =" F(0(&R) (&) Ati| < |A — Zf ¢' (&) Dt
(2.12) HI) T F(OENY )AL — > F(B(E))D (&) At
+1) f<¢<sk>>¢’<£;:>mk = F(6(&r)e (&) At
Notice that inequality 2.10 implies that
[A=" F(GENS (€0 Dt = [A = F($(&h) D] < e.
On the other hand, we have

> F OGN (o)At — > F(D(ER)D (65) At

< Wk, PO (€D Dt (2 3(60), 6(Ek) € [wr1, 2x])
< wilf, P) Ay

<eE.

Concerning about the last inequality in 2.12, since we have |¢'({) — ¢/(§)| < e forall k =1,..,m
we have

1> FBENS () Atk — > F($(8k)9 (&) Aty < M(b—a)e
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where |f(x)| < M for all z € [c,d].

Finally by inequality 2.12, we have

A= F(0(&) (&) At < e+ 2+ M(b— a)e.

Finally, we have to show that fo¢ € R[a,b]. To see this, we have shown that the function fo¢(t)¢'(t) €
Rla, b] by above. Since ¢’ > 0 is continuous on [a, b], é is continuous on [a,b] and thus % € Rla,b).
This implies that the function f o ¢ = é( fo¢-¢') € Rla,b] as desired. The proof is complete. O
Definition 2.32. Let —co < a < b < 00.

(i) Let f be a function defined on [a,00). Assume that the restriction f|io ) is integrable over
[e%9) T
[a,T] for all T > a. Put / f= Tlim / f if this limit exists.
a =0 Ja
Similarly, we can define ffoo fif f is defined on (—o0,].

b b
(i) If f is defined on (a,b] and f|.p € Rlc,b] for all a < ¢ <'b. Put/ f = l_i>m+/ fif it
exists. ¢ ‘
Similarly, we can define f;f if [ is defined on [a,b).
(iii) As f is defined on R, if fooof and ffoof both exist, then we put ffooof = ff)oof + fooo f-
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Clearly, the Cauchy criterion will imply the following immediately.

Proposition 2.33. Let f : [a,00) — R be a function given as in Definition 2.32.
(i) The improper integral faoof exists if and only if for any € > 0, there is M > 0 such that

|fff| < & whenever M < A < B.

(i) Let g be a non-negative function defined on [a,o0) such that |f| < g on [a,00). If [*g is
convergent, then so is faoo f-

(iii) Suppose that 0 < g < f on [a,00). If [° g is divergent, then so is [ ° f.

Similar assertion holds when f is defined on (a,b].

Remark 2.34. By using the Cauchy Theorem,it is clear that if faoo |f| is convergent, then so is the
integral faoo f. However, the converse does not hold. It is quit different from the case when f defined
on [a,bl.

. o (71)”_1 - 00 . . .
For example, if f(x) = T asn€n—1,n)n=12,.., then [ f is convergent (it will be shown
in the last chapter) but [ |f| is divergent.

Example 2.35. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

oo
I'(s) := / ¥ le T dy
0
for s € R. Then I'(s) is convergent if and only if s > 0.

Proof. Put I(s) := fol 2 le™*dx and I1(s) := [[°a* te “dz. We first claim that the integral I1(s)
is convergent for all s € R.



24 CHI-WAI LEUNG

In fact, if we fix s € R, then we have
) J,‘S_l
Sy o =0

So there is M > 1 such that "z;—;; <1 for all z > M. Thus we have

o0 oo
0< / 2 e dx < / e %24y < .
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s —1# —1;
OS/ x31exdx§/ 2ty = {S( w) s =LAl
n n

—lInn otherwise .

1
Thus the integral I(s) = lim / 25 le™*dx is convergent if s > 0.
n—0+ n

Conversely, we also have

-1 .
/1 P /1 T {68(1 - ifs-1# -1
n n

—ellnn otherwise .

So if s <0, then fnl 5" le™®dzx is divergent as n — 0+. The result follows. O

3. APPENDIX: LEBESGUE INTEGRABILITY THEOREM

Throughout this section, let f be a R-valued function defined on [a, b] and let M := sup|f(z)].

Definition 3.1. A subset A of R is said to have measure zero (or null set) if for every e > 0, there
is a sequence of open intervals, (an,by) such that A C | J(an,bn) and > (by, —ap) < €.

Clearly we have the following assertion.

Lemma 3.2. If (A,) is a sequence of null sets, then so is |J Ay. Consequently, all countable sets are
null sets.

From now on, we use the following notation in the rest of this section.

(1) For each subset A of R, put w(f, A) := sup{|f(z) — f(2')| : z, 2’ € A}.
(2) For ¢ € [a,b], put w(f,c) :=inf{w(f, B(c,r)) : r > 0}, where B(c,r) := (¢ —r,c+r).

The following is easy shown directly from the definition.

Lemma 3.3. The function f is continuous at ¢ € [a,b] if and only if w(f,c) = 0.

Theorem 3.4. Lebesgue integrability theorem: Retains the notation as above. Let D := {c €
[a,b] : f is discontinuous at c}. Then f € Rla,b] if and only if D has measure zero.

Proof. For each positive integer n, let Dy, := {z € [a,b] : w(f,z) > 1}. Then we have D = U D,,.
n=1

For (=), assume that f € R|a,b]. Then by Lemma 3.2, it suffices to show that each D,, is a null set.
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Fix a positive integer m such that D,, # (. Now Let ¢ > 0. Since f € R[a,b|, there is a partition
P:a=uwm9 < - < zy = bsuch that Y wi(f, P)Azr < 5. Notice that ¢ € Dy, if and only if
w(f, B(c,8)) > L for all § > 0, where B(c,8) := (¢ — §,c+ 6). Thus, if (z4_1,2x) N Dy, # 0, then
wr(f, P) > % This implies that

6 n
> ;Wk(fv P)Axy,

v

Z wk(fa P>Axk

k:(zg—1,21)NDm#0

1

m
ki(zk—1,25)NDm#D

Therefore, we have D,,, C U [xg—1, 2] and

k:(:rk,l,:pk)ﬂDm;é@
Z Axy < €.
k:(zp—1,25)NDim #D

Thus, D,, is a null set for each positive integer m as desired.

Now for showing (<), assume that the set D of all discontinuous points of f is a null set.

We first claim that each D,, is a closed set. To see this, note that a point ¢ € D,, if and only
if w(f,B(e,r)) > % for all » > 0 if and only if for all n > 0 and for all » > 0, there are points
z',2" € B(ec,r) such that |f(z) — f(z”)] > L —n. Now let (c,) be a sequence in D, converging to
a point ¢. Let r > 0 and 7 > 0. Then there is ¢y such that |cy — ¢| < % Since ¢y € D,,, there are
2’2" € B(en, %) such that |f(2) — f(z”)] > L —n. Since 2/,2” € B(en, 5), 2/,2" € B(c,r). Thus,
¢ € Dy, is as desired. This shows that D,, is a closed subset of [a, b], and hence it is compact.

Let ¢ > 0 and let m be a positive integer such that 1/m < e. By the assumption D = (J;2, D,
is a null set and so is the set D,,. Then there is a sequence of open intervals, say {(a;,b;)}, such
that Dy, C (J(a;,b5) and > (b; — a;) < €. Since Dy, is compact, there are finitely many (a;,b;)’s for
j =1,..,K such that D,, C U]K:l(aj,bj). Note that we may assume that the sequence a1 < by <
as < by < --- <ag < bg. Choose a partition @ := ({a;,b;: j =1,..., K} U{a,b}) N [a,b] on [a,b] and
rewrite Q asa=x9 < --- < xp = b.

Put [ :={j: [zj_1,2;] N Dp, =0} and 11 := {j : [zj_1,2;] N Dy, # 0} .

Note that if j € I, then w(f,z) < - for all z € [z;_1,z;]. Hence, for each z € [z;_1,z;], there
is 0, > 0 such that w(f, B(z,0;)) < % Then by the compactness of [z;_1,x;], there is a partition
Plixj=x5 <. < =uzjon [vj_1,;] such that wy (f, P}) < % for all 7/ = 1,...,1. Thus, we
have . wj(f, P]{)ij/ < L(zj—zj_1) <e(wj_1 — ;) whenever j € I.

On the other hand, if j € II, then [zj_1,x;] N Dy, # 0. Since Zle(bj —a;) < g, we see that
> jennwilf, @)Az; < 2Me.

Now put P := QU U Pj’ ta =19y < --- <yny =b. From the above argument, we have shown that
jel
Zfil wi(f, P)Ay; < e(b—a)+ 2Me. Thus f € R[a,b]. The proof is complete. O

4. APPENDIX: APPROXIMATE INTEGRATIONS

In this section we are discussing the methods about the approximation of the integral of a differen-
tiable function.
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Let f € R|a,b]. Recall that

/ fla)de = lim Zf (&) D,

Now for each positive integer n, consider the partltlon a=x9g < x1 < - < xp = b, where z :=
a-+ @ for k=0,..,n and so Axy = b;—a. We call L,, := bfT“ > p—y f(xk—1) the n-the left sum of f,
ie. (& = mp_1). Similarly, we call R, := =237 | f(xy) the n-the right sum. Thus, if f € R[a,],
then we have

b
/ f(x)dx =1lim L,, = lim R,,.
Proposition 4.1. Let f € Ct[a,b] (hence, f € Rla,b]). Let M := SUP,e(ap | f'(7)]. Then
b M(b— a)?
|/ flx)dx — Ly| < (2na,) for all n.

Proof. Fix n. Recall that let z; :== a + Z(b 9 for i = 0,1,2...,n. The Mean Value Theorem implies
that for each element = € (x;_1, z;], there ex1sts some point ¢, € (z;—1,z;) such that

f(x) = flzio1) + f(ca)(x — zi1).

This gives
b n T;
[ t@de=3" [ fa)da
e i=1""%i-1
= Z/ f(zi—1)dx + / I'(cx)(x — xi—q)dz
i=1 7 Ti-1 Ti—1
= Ln—l—Z/ f'(cz)(x — xi_q)dz.
i=1 v %i-1
This gives
M(b— a)?
x)dx — Ly| < ) (X — zioq)|de < ———.
The proof is complete. O
We keep the notation as above, put
1 = 1 b—a
T = i(Ln + Ry) = Z[i(f(xz—l) + f(zi))] :

i=1

Proposition 4.2. Trapezoidal method: Let f € C?[a,b]. Put M := sup|f®(x)|. Then for each
n, we have

b M(b—a)?
|/a f(x)dx —T,| < o for all n.

Proof. The proof is similar to the proof of Proposition 4.1 above.
Note that for each [z;—1.z;] and = € (x;_1,z;), the Mean value Theorem gives a point ¢, € (21, ;)
such that

f(x) = f(zio1) + f(ca)(x — zi1).

Using the Mean value Theorem again, we can find u, € (z;-1, ;) such that

fee) = fl(wica) + fu(ucc>(0:c — Zi—1).
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From these two equations we have

(4.1) f@) = fl@im) + f(@ic) (@ — 2im1) + f (e)(ca — zi1)(x — 2i21)
for all x € (x;—1, ;). By apply the Mean value Theorem on f“mm], then there is d, € (x;—1, ;) such
that

f(x) = (@) + f'(de) (x — 23).
Using the similar argument as above, there is v, € (;_1, ;) such that
Fl(de) = f'(mi1) + " (va)(de — wi1).

Hence, we have

(4.2) f@) = f@) + F(@im) (@ — ) + f (02)(de — zim1) (@ — 27)
Eqgs 4.1 and 4.2 give
f(z) = f(xi_l);_ fz) + f/(l;_l) [(z = zi1) + (z — )]
+ f () (e —xim1) (@ — 1) + S (v) (de —xi—1)(x — 24-1)

2 2

for all x € (zj—1, z;].
Note that we have f;;_l [(z —xi—1) + (x — x;)]dx = 0 and

T (ug MAz; %
| / f (2u )(cw —xi1)(x — zi—1)dx| < 5 x / (r —xi—1)dx
Ti—1 Ti—1

2 2
(b—a)®

4 n3

[ e i <20 [ g

T — xi )

Similarly, we have

2

= 9 5("3@ - xzfl)
M (b—a)?

4 n3

Therefore, we get

’ [ =~ [ flmi) + f)
f(x)dx = flx)dx = dx
IRCESIREE W I
_1_2/% f (qu)(cm _;ci1)(;1¢—:L‘i1)|clac+§:/3&Z f (27)
=1 Ti—1 i=1 Tj—1

This implies that

b "M (b—
\/a f(x)dx—Tn\§;4(

The proof is finished. l

—1)(x — x;)dx.

Z”:g _M(-a)
— 4 n3 2 n?2
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5. SOME RESULTS OF SEQUENCES OF FUNCTIONS

Proposition 5.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a,b);

(ii) : each f, is a C' function on (a,b);

(iii) : f), — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < z < b (similarly, we can prove it in the same way as
a < x < c¢), the Fundamental Theorem of Calculus implies that

fulo) = | ")t + fu(e).

Since f], — ¢ uniformly on (a,b), we see that

/f;(t)dt—>/ g(t)dt.
This gives

(5.1) f@) = [ oot + )

for all z € (¢, b). Similarly, we have f(z) = [ g(t)dt + f(c) for all z € (a,b).
On the other hand, ¢ is continuous on (a,b) since each f] is continuous and f;, — ¢ uniformly on
(a,b). Equation 5.1 will tell us that f’ exists and f' = g on (a,b). The proof is finished. O

Proposition 5.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim f,,(c) exists;
(ii): f] converges uniformly to a function g on (a,b).
Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ¢ > 0. Then by the assumptions (i) and (i%), there is a positive integer NV such that

|[fm(c) = fulc)l < and |f;,(x) — fo(z)| <e
for all m,n > N and for all z € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,, — f, on (¢, z), then there is a point £ between ¢ and x such that
(5.2) fm(@) = fu(z) = fin(c) = fule) + (f(&) — fr(&)(z — o).
This implies that
(@) = fu(@)] < | fim(0) = fu(Q)] + [ fr(€) = fa(©)llz — | <+ (b—a)e

for all m,n > N and for all x € (¢,b). Similarly, when z € (a,c), we also have

|fm(x) - fn(x” <e+ (b —a)e.
So Part (a) follows.
Let f be the uniform limit of (f,,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

@)~ )

T—U r—Uu

= g(u).
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Let € > 0. Since (f}) is uniformly convergent on (a,b), there is N € N such that
(5:3) (@) = fa(a)l <e

for all m,n > N and for all z € (a,b)
Note that for all m > N and = € (a,b) \ {u}, applying the Mean value Theorem for f,, — fx as before,

we have
fm(x) = I (@) _ fm(u) = fn(w)

T —u T —u
for some & between u and =x.
So Eq.5.3 implies that

(fm (&) = fn (&)

‘fm(fv) — fm(uw) _ In(@) = N(u)

A4 <
(54) r—u Tr—u |se
for all m > N and for all z € (a,b) with x # u.
Taking m — oo in Eq.5.4, we have

S =5 ) = Ix),

r—Uu r—Uu

Hence we have

<oy (DI )

So if we can take 0 < d such that |W — fy()| < e for 0 < |z —u| < J, then we have
f(z) = fu)

r—Uu

(5.5) | — x| <2

for 0 < |z —u| < 6. On the other hand, by the choice of N, we have |f} (v) — fx(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.5.5 give

flx)— f(u
|M — g(u)| < 3¢
T —u
as 0 < |z —u| < 4, that is we have
T—u T — U
The proof is finished. ]

Remark 5.3. The uniform convergence assumption of (f},) in the Propositions above is essential.

Example 5.4. Let fu(z) := 1557 for v € (—1,1). Then we have
1 —n2z? 0 if © # 0;
= lim f/ =lim———— = ’
g(x) :=lim f},(z) := lim L {1 if o =0.
On the other hand, f, — 0 uniformly on (—=1,1). In fact, if f}(1/n) =0 for alln = 1,2, .., then f,
attains the mazimal value fo(1/n) = 5= at x = 1/n for each n = 1,... and hence, f, — 0 uniformly

on (—1,1).
So Propositions 5.1 and 5.2 does not hold. Note that (f]) does not converge uniformly to g on (—1,1).
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Proposition 5.5. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that
(i) for each x € A, we have fp(x) < fpt1(x) for alln =1,2...;
(ii) the pointwise limit f(x) := lim, f,(x) exists for all x € A;
(iii) f is continuous on A.
Then f, converges to f uniformly on A.
Proof. Let g, :== f — f,, defined on A. Then each g, is continuous and g, (z) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(5'6) gn(xn) > €.
for some n > N and some x, € A. From this, by passing to a subsequence we may assume that
gn(xy) > € for all n = 1,2,.... Then by using the compactness of A, there is a convergent subsequence

(xp,,) of (x,) in A. Let z := hglxnk € A. Since g, (2) | 0 as k — oo. So, there is a positive
integer K such that 0 < gy, (2) < €/2. Since g, is continuous at z and limz,, = 2z, we have
7

lim g, (Tn;) = gng (2). So, we can choose i large enough such that i > K
7

Ini(Tn;) < Gng (¥n;) <€/2

because g (zn,) L 0 as m — oco. This contradicts to the Inequality 5.6.

Method II: Let ¢ > 0. Fix x € A. Since gn(x) | 0, there is N(z) € N such that 0 < g,(z) < € for
all n > N(x). Since gy(y) is continuous, there is d(x) > 0 such that gy(,)(y) < ¢ for all y € A with
|z —y| < 0(x). If we put Jy := (x—0(x),x+d(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many 1, ..., &, in A such that A C J,, U---UJ,, . Put N := max(N(z1), ..., N(z,)).
Now if y € A, then y € J(z;) for some 1 <4 < m. This implies that

In(Y) <IN (y) <€
for all n > N > N(z;). O

6. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 oo
Definition 6.1. We say that a series Z an s absolutely convergent if Z lan| < oco.
n=1 n=1

o
Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.
n=1

1)n+1

[ee]
Example 6.2. Important Example : The series Z(na 1s conditionally convergent when
0<a<l. e
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f :[1,00) — R given by
(_1)n+1

f(x):T if n<z<n+l.

o0
If a =1/2, then / f(z)dx is convergent but it is neither absolutely convergent nor square integrable.
1
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oo
Notation 6.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Z%(n) is called an

n=1

o0
rearrangement of E Q.

n=1

Example 6.4. In this example, we are going to show that there is an rearrangement of the series

o )
-1 i+1
E i is divergent although the original series is convergent. In fact, it is conditionally conver-
1
i=1
gent.

We first notice that the series . 2 7 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

n

1
S M e
Zil i1 M (*)

for all n > N. Then there is N1 € N such that

Ny

oLl
—~ 21 —1 2 '
i=1

By using (%) again, there is a positive integer No with N1 < Na such that

Ny

1
— = S s
Z 21— 1 + 22 -1 >
N1<i<Ns

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that

I 1 1
— — 4 Ny i — - — — >k
Sroioat X omoitit 2 i m
N1<1<N2 N1 <i<Ny
for all positive integers k. So if we let a, = (_11):+1, then one can find a bijection o : N — N such that
oo 4
-1 i+1
the series Z ag(;) 18 an rearrangement of the series Z (=1) and diverges to infinity. The proof
i
=1 =1

18 finished.

Theorem 6.5. Let Zan be an absolutely convergent series. Then for any rearrangement Zag(n)

n=1 n=1

is also absolutely convergent. Moreover, we have Z an = Z Ug(n)

n=1 n=1

Proof. Let o : {1,2...} — {1,2...} be a bijection as before.
We first claim that ) a,(,) is also absolutely convergent.
Let € > 0. Since ), |an| < oo, there is a positive integer /N such that

’a/N_A'_l‘ L R —+ ‘G/N—l—p’ < E e (*)

for all p = 1,2.... Notice that since ¢ is a bijection, we can find a positive integer M such that
M > max{j:1<o0(j) < N}. Then o(i) > N if i > M. This together with (%) imply that if i > M
and p € N, we have
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Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y- an = >, o@)- Put Il =3 a, and I’ = 3 a,(n). Now let ¢ > 0. Then
there is NV € N such that

N
\Z—Zan’<€ and  |aniq| 4 tlangp| <g-oeoien (%)
n=1
for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and
M
' — Z%(i)’ < €. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (xx) gives
i=1
N M
1D an =D as@l < Y lail<e.
n=1 =1 N<i<oo
We can now conclude that
N N M M
=< = D anl £ an =3 ag] +1)_aow — U] < 3e.
n=1 n=1 i=1 1=1
The proof is complete. O

In view of Theorem 6.5, it is naturally to introduce the following definition.

Definition 6.6. A series Yz, is said to be unconditionally convergent if whenever m is a bijection
on Zy the series ), Tr(n) 1S convergent.

Theorem 6.7. Let ), x, be a series of numbers. Then the following are equivalent.

(1) >, n is unconditionally convergent.

(i1) For any subsequence of positive integers ny < ng < ---, the series ), xp, is convergent.

(111) For any choice of sign sequence (&,), that is €, = 1, the series ), ey, is convergent.

(iv) For any e > 0, there is a positive integer N such that | )., x;| < € whenever A is a finite

subset of Z4 with N < min A.
Proof. The route of the proof is as the following.
(i) = (iv) = (i) = (iv) = (i); and (ii) < (iii).

Part (ii) < (i) is clear.
For showing (i) = (iv). Assume that (iv) does not hold. Hence, there is ¢ > 0 and there is a
sequence of finite subsets (A,) of Z such that max A, < minA,;; and |}, A, x;| > e for all n.
From this we see that A, N A,, = () for all m # n and there is a bijection 7 : Z, — Z, such that
each A, = {n(in) < 7(in+1) < --- < 7w(in + pn)} for some positive integers i, and p,. Then by the
construction of A,, the series ) 7., is divergent, hence (i) does not hold.
For showing (iv) = (ii), let ), y,, be any subseries of > ,. Let ¢ > 0. Then by the assumption
of (iv), there is a positive integer N such that |}, , #;| < € whenever A is a finite subset of Z; with
min A > N. Choose K such that ny > N for all K > K. This implies that |z, , + - +zn,, | <€
for all K > K and for all p=1,2,..., so the series ), xy, is convergent.
For (i7) = (iv), assume that (iv) does not hold. As in the proof of (i) = (iv), there is € > 0 and there
is a subsequence () such that [, ., @n,| > €, thus, the subseries ), z,,, is divergent.
For (iv) = (i), let m be any bijection on Z,. Let ¢ > 0 and let N be given as in (iv). Take ig such
that 7(i) > N for all i > 4p. This implies that [ >, «;;, Zx(;)| < € for all ig <4y <. Thus, (i) holds.
The proof is finished. O
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Remark 6.8. Notice that from the proof of Theorem 6.9, we see that the Theorem does still hold if
the series Y. x, is taken in R,

Corollary 6.9. Let (z,) be a sequence of real numbers. Then ), x, is absolutely convergent if and
only if it is unconditionally convergent.

Proof. Part (=) has been shown in Theorem 6.5.

For (<), assume that ), is unconditionally convergent. For each n, let e, := %1 such that
|zn| = €nxn. Then by Theorem 6.9 (i) < (i), the series > |z,| = D enxy is convergent as desired.
The proof is finished. l

7. POWER SERIES

Throughout this section, let

o0
f(z) = Zail’l ............ (%)
i=0
denote a formal power series, where a; € R.

Lemma 7.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(z) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n| for any 0 <n < |c|.

Proof. For Part (1), note that since f(c) is convergent, then lim a,,c™ = 0. So there is a positive integer
N such that |a,c"| <1 for all n > N. Now if we fix |z| < ]c| then |z/c| < 1. Therefore, we have

Z\anux"\ < Z anlle® + 3 lancla/e]" < Z anlle®] + 3 Je/el" < oo,
n>N n>N
So Part (i) follows.
Now for Part (i7), if we fix 0 < n < |c| ,then |a,z™| < |a,n|™ for all n and for all z € [—n,n]. On the
other hand, we have ) |a,n™| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. ]

Remark 7.2. In Lemma 7.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c, c] in geneml

For example, f(z) =1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 7.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: ¢ € dom f} < co. Then r is called the radius of convergence

of f.

Remark 7.4. Notice that by Lemma 7.9, then the domain of convergence of f must be the interval
with the end points +r if 0 < r < co.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f = R.

Example 7.5. If f(z) = >..°  nla™, then r = (0). In fact, notice that if we fir a non-zero number
x and consider lim,, |(n + 1)lz"*|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor =0 and dom f = (0).
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Example 7.6. Let f(z) = 1+ 3.2 2™/n"™. Notice that we have lim,, |2"/n"|Y/™ = 0 for all z. So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 7.7. Let f(z) = 1+ 2"/n. Then lim, |2""/(n + 1)| - [n/a™| = |z| for all x # 0.
So by the ration test, we see that if |x| < 1, then f(z) is convergent and if |x| > 1, then f(z) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 7.8. Let f(x) = Y. 2"/n%. Then by using the same argument of Ezample 7.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f = [—1,1].

Lemma 7.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<n<r.

Proof. Tt follows from Lemma 7.1 at once. O

Remark 7.10. Note that the Example 7.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 7.7. Then f does not converges on (—1,1). In fact, if we let
sn(z) = > 000 apz®, then for any positive integer n and 0 < x < 1, we have

|s2n(x) — sn(2)] =

:L,TL

n+1+ ...... _’_%

From this we see that if n is fized, then |son(x) — sp(x)] — 1/2 as @ — 1—. So for each n, we can find
0 < <1 such that |san(z) — sp(z)] > 1 -1 = i Thus f does not converges uniformly on (—1,1) by
the Cauchy Theorem.

|an1]

|anl

1/n

Proposition 7.11. With the notation as above, let { = lim |a,| or lim provided it exists.

Then

if 0<¥l< o0
if £=o00

o0 if £=0.

Proposition 7.12. With the notation as above if 0 < r < oo, then f € C*®(—r,r). Moreover, the
k-derivatives f*)(x) = Y onsk @kn(n —1)(n —2) .- (n—k+Da" " for all x € (—r,r).

O s

T =

Proof. Fix ¢ € (—r,r). By Lemma 7.9, one can choose 0 < 1 < r such that ¢ € (—n,n) and f converges

uniformly on (—n,n).

It needs to show that the k-derivatives f*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y o0 ((an2™) = Yo% na,z™ !, then it also has the same radius r be-

cause limy, [na,|"/" = lim, |a,|'/". This implies that the series .°°, na,z™~' converges uniformly
n (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and

£1(0) = Yoy nagen =,

So the result can be shown inductively on k. O

Proposition 7.13. With the notation as above, suppose that r > 0. Then we have

/f t)dt = Z/ ant™dt = +1 W

n+1

for all x € (—r,r).
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Proof. Fix 0 < x < r. Then by Lemma 7.9 f converges uniformly on [0,z]|. Since each term a,t" is
continuous, the result follows. ]

Theorem 7.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at © =r (resp. x = —r), that is li\mi flx) = f(r).

Proof. Note that by considering f(—x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at z = 1 as desired.
Let e > 0. Since f(1) is convergent, then there is a positive integer such that

for n > N and for all p =1,2.... Note that for n > N; p=1,2... and = € [0, 1], we have

sn+p($) — sn(7) = an—t—lﬂUn—H + an+2$n+1 + an_,_gx”"‘l g + an+pxn+1
+ pgo(@™ — 2" fan (2™ - + apgp(a™? — 2™
(7.1) + an+3 <$n+3 — xn+2) o + an+p<$n+3 xn+2)
+ an+p(xn+p _ xn—i—p—l)_

Since z € [0,1], [a" A+l — gntk| = pntk _ gnthtl Qo the Eq.7.1 implies that
()0 ()] < €1+ (=) b () g (DY) = (22 g P) < 9

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(x) := f(rz) = ), anr"2". Note that lim, |anr”|1/” =1
and g(1) = f(r). Then by the case above,, we have shown that

f(r)=g(1) = lim g(z) = lim f(z).
Tz—1— T—r—
The proof is finished. ]

Remark 7.15. In Remark 7.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r| in this case.

8. REAL ANALYTIC FUNCTIONS

Proposition 8.1. Let f € C*(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is € = £(x,n) between ¢ and x such that

*ofrR) (e z p(n+l)
@ =35 )<x—c>’“+/ 0 iy
k=0 ¢

k! n!

> #(k)
Call Z / k'(c) (x —¢)* (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O
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Definition 8.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series > oo o ax(z — c)* such that

f(z) = Z ag(z—c)fF (%)
k=0

for allx € (¢ —d,c+6) C (a,b).

Remark 8.3.
(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 7.12, we have seen that f € C*(a,b) and

&) (¢
ap = f k;|( ) ......... (**)

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~ 1/a? if x #0;
f(ﬁ)_{o if ©=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is d > 0 such that ap, = 0 for all k by the Eq.(xx) above and hence f(x) =0
for all x € (—0,0). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is

similarly defined as in the real case. However, we always have: fis complex analytic if and
only if it is C*°.

© k
Lemma 8.4. Let (aj;);ken be a set of real numbers. Assume that ZZ laji| < co. Then L :=
k=0 j=0
© k 00
Z Zajk exists and L = Z Zajk'
k=0 j=0 §=0 j>k
>~ k k
Proof. Note that L := ZZajk exists due to the Cauchy theorem. Put by := Z lajr|. Then for
k=0 j=0 =0
any € > 0, there is K1 € N such that
K k k
|L—ZZajk|<5for all K > Kj; and Z Z|ajk\<s.
k=0 j=0 k>K1 j=0
Let J; = K;. Then for J > J;, we have
J Ji
L= apl <IL=) > apl+1 Y > ajl
=0 k>j =0 k>j 1<G< k>j
SIL= >0 D apl+l D0 D apwl DD D ag
0<j<J1 j<k<K; 0<j<Ji k>Kq J1<j<J k>j

< 3e.
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n

Proposition 8.5. Suppose that f(x) := > 27, ak (z—c)F is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ 1) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ =0
and hence, I = (—r,7). Now fix z € I and choose § > 0 such that (z — J,z + ) C I. We are going to

show that
s =31

Jj=0

(

)z :
j!( )(a;—z)J.
for all z € (z — 0,2 + 9).

Notice that |z| + |z — z| € I for all z € (2 — 6,2 + &) and thus, Y oo, |ax|(|z] + |z — 2])* < co. Lemma
8.4 implies that

f(z) = Zak(x —z+42)*
k=0
00 k
Sy D i Dy
k=0  j=0 J:

J=0 k>j
> £0)
:Zf ,'(Z)(x—z)J
; J:
j=0
for all x € (z — J, 2 + ). The proof is finished. O

Example 8.6. Let a € R. Recall that (1 + x)* is defined by e m+2) for & > —1.

Now for each k € N, put
(a> B {a(a—1)~~-l-€~!~(a—k+1) Zf k #0’

k 1 if ©=0.
Then

(1+2)* = g; <Z>a:k

whenever |z| < 1.
Consequently, (14 x)® is analytic on (—1,1).

Proof. Considering the formal power series

F(z) = i <Z‘> a*.

k=0

The ratio test implies that the radius of the series F'(x) is r = 1. Hence, the series F'(z) is convergent
in (=1,1). In particular, F(x) is analytic on (—1,1) by Proposition 8.5. We are going to show that
F(z) = (14 x)® for all x € (—1,1). Notice that we have the following equation.

(8.1) (1+2)F'(z) = aF(z) forall z € (—1,1).
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To see this note that we have

Thus, the Eq 8.1 holds. From this we have F'(x) # 0 for all z € (—1,1). To see this, if F(¢) = 0 for
some ¢ € (—1,1), then F'(¢) = 0 by Eq 8.1. Differentiating the Eq 8.1, we get F(?)(¢) = 0. To repeat
the same step, we have F(")(¢) = 0 for all n = 0, 1, 2.... Notice that since F is real analytic on (—1,1),

F(z) =", F(Z)!(C) (x — ¢)™ in some open subinterval J of (—1,1) that contains ¢ and so F' = 0 on
J. From this if we put the set L(c) := {-1 < a < ¢: F(t) = 0;Vt € (a, ]}, then L(c) # (. Hence,
a := inf L(c) exists and so —1 < a. First we notice that a € L(c), that is F|(a,c] = 0. Next we want
to show that a = —1. If not, assume —1 < a. Since F'(a) = limy_, 4+ F(t), we have F'(a) = 0. As the
reason above, there is an open subinterval J; of (—1,1) containing a satisfying F'|J; = 0 and so, there
is a point —1 < a; < a such that F|(a1,a] = 0. This gives a; € L(c) and so, a < aj that contradicts
to a; < a. Therefore, we have F|(—1,¢] = 0. Similarly, one can also obtain F|[¢,1) = 0. Hence, F =0

n (—1,1). It is absurd. This and Eq 8.1 give

x F/ t x
O g [T g
o F(t) o 1+t
for all z € (—1,1). This implies that F(z) = (1 + x)“ as desired. O
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